
Widget API Overview

Background

The Widget API was designed according with the following goals in mind: - to hide the complexity of the Agent application
from the widgets - to present small and consistent interface to the widgets - to maintain a stable interface for the widgets

Overview

The Widget API is split in two major subsystems: the event system and the interfaces. The events system is used to
broadcast various messages from the services to the widgets and for widget-to-widget communication. The interfaces are a
facade to the services and the core functionality.

Widget messaging

As mentioned previously, the external widgets are generally hosted on a different domain and cannot access the Widget API
directly. To bypass the domain barrier the Agent application's core will open a messaging channel with the browser's
Messaging API.

The code below demonstrates one way to subscribe to and handle messages from the API:

const origin = 'the origin of the agent application';
let port;

window.addEventListener('message', message => {
 // Make sure that the channel comes from the correct source:
 if (message.origin !== origin) return;

 // Setup the communication channel:
 if (!port) {
 port = message.ports[0];
 port.onmessage = receiver;
 }
});

function receiver(message) {
 //code here
}

The payload of the messages is contained inmessage.data. The core will add amessage.data.typeproperty to all messages
too.

Requests to the Widget API can only be send trough the provided port:

port.postMessage(message);

Interfaces

To get a property or to call a method of the Widget API the {call, args} message format should be used, where call is the
path to the method (or property) in the API.

In case of a method call, args is an array of all required arguments for the method call. Example:

port.postMessage({
 call: 'tab.setTitle',
 args: ['new title']
});

If the method returns a result, it will be sent to the external widget by the port.onmessage handler in the format{name, value,
type}, where name is the name of the requested property or method,value is the value of the property or the result of the
call, and type will be the string 'result'.

Copyright ©2022 Puzzel Ltd. All rights reserved. www.puzzel.com

Example response to a getOption call:

{
 name: 'widget.getOption',
 value: 'https://demo.puzzel.com/dev/widgets/external/demo/',
 type: 'result'
}

Note that, due to the way the Messaging API works, the payload of the message is in the message.data property.

If the called method doesn't return a result, no message will be sent by the core. If the called method returns a promise the
message will be sent when the promise is resolved or rejected. In case the promise is resolved a standard result message
will be sent by the core, where value will contain the value of the promise. In case the promise is rejected an 'error' message
will be sent:

{
 name: 'widget.setOption',
 value: 'Unexpected end of JSON input',
 type: 'error'
}

If matching a call to a result is required, the optional id could be added to the request. It will be returned back:

{
 call: 'tab.getOption',
 args: ['option name'],
 id: '0123456789'
}

Result:

{
 name: 'tab.getOption',
 value: 'option value',
 id: '0123456789'
}

The widget can also observe a property for changes by sending a{watch}message. The watchfield should hold the path to
the property in the Widget API.

If the value of that property changes, the core will send a{name, old, new, type}message, wherenamewill be the same
property path,oldwill be the value of that property before the change, newafter the change, and typethat will be the string
'changed'.

Events

The external widgets can subscribe to events by sending a {subcribe, options: {once, address}} message to the core. The
subscribe field should contain the event's name. The whole options field is optional as are its properties: the boolean once
and the address string. The address has the same meaning as in the ExtendedEventAggregator's methods. The once set
means that the subscribeOnce method will be used, i.e. the external widget will receive only a single event before the
subscription terminates itself.

The events will be received with a {name, value, type} message, where name will be the name of the event, value is the
payload, and type will be 'event'.

{
 name: 'userStatusChanged',
 value: 'System',
 type: 'event'
}

The complete API reference will be made available here

Copyright ©2022 Puzzel Ltd. All rights reserved. www.puzzel.com

https://help.puzzel.com/api-documentation/widget-api-lib

	Widget API Overview
	Background
	Overview
	Widget messaging
	Interfaces
	Events

